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Abstract

Automated high throughput plant phenotyping involves
leveraging sensors, such as RGB, thermal and hyperspec-
tral cameras, to make large scale and rapid measurements
of the physical properties of plants for the purpose of better
understanding the difference between crops and facilitating
rapid plant breeding programs. One of the most basic phe-
notyping tasks is to determine the cultivar, or species, in
a particular sensor product. This simple phenotype can be
used to detect errors in planting and to learn the most differ-
entiating features between cultivars. It is also a challenging
visual recognition task, as a large number of highly related
crops are grown simultaneously, leading to a classification
problem with low inter-class variance. Here, we describe
the Sorghum-100 dataset, a large dataset of RGB imagery
of sorghum captured by a state-of-the-art gantry system.

1. Introduction

Sorghum is widely used as an agricultural feed substi-
tute, a gluten-free ancient grain, a source of bio-fuel, and
even as popcorn in some food communities. Demand for
sorghum for a variety of purposes has risen with the need
for better food and energy sources, motivating the need to
rigorous plant breeding strategies to select for traits that are
valued for each purpose (e.g., more grain for food uses or
more biomass for bio-fuel production).

Automated high throughput plant phenotyping involves
leveraging sensors, such as RGB, thermal and hyperspectral
cameras (among others), to make large scale and rapid mea-
surements of the physical properties of plants for the pur-
pose of better understanding the difference between crops
and facilitating rapid plant breeding programs. One of the
most basic phenotyping tasks is to determine the cultivar (or
species) in a particular sensor product. In experiments with
a large number of related cultivars being grown simultane-
ously, this is a challenging fine-grained visual categoriza-
tion task due to the low inter-class variability.

Figure 1: The TERRA-REF Field and Gantry-based Field
Scanner in Maricopa, Arizona (top), with sorghum being
grown in the field. Sorghum is a hugely important cereal
crop, widely used as a source of grain, agricultural feed, and
even bio-fuel. Over several seasons, hundreds of varieties
of both bio-energy and grain sorghum were grown in the
TERRA-REF field (middle and bottom), and were imaged
daily for the purpose of high throughput phenotyping.
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2. Background

2.1. TERRA-REF Field and Gantry-based Field
Scanner

In 2016, the Advanced Research Project Agency–Energy
(ARPA-E) funded the Transportation Energy Resources
from Renewable Agriculture Phenotyping Reference Plat-
form, or TERRA-REF[2]. The TERRA-REF project stood
up a state-of-the-art gantry based system for monitoring the
full growth cycle of over an acre of crops with a cutting-
edge suite of imaging sensors, including stereo-RGB, ther-
mal, short- and long-wave hyperspectral, and laser 3D-
scanner sensors. The goal of the TERRA-REF gantry was
to perform in-field automated high throughput plant phe-
notyping, the process of making phenotypic measurements
of the physical properties of plants at large scale and with
high temporal resolution, for the purpose of better under-
standing the difference between crops and facilitating rapid
plant breeding programs. Due to the technical demands of
high-throughput phenotyping, it is most often performed
in controlled environments (e.g., greenhouses with imag-
ing platforms). Controlled environments play a very im-
portant role in understanding plant performance by provid-
ing management of the abiotic environment, and the abil-
ity to reproduce experimental conditions year-round, but
plant performance in field settings, both in terms of growth
and yield parameters, is strongly influenced by variabil-
ity in weather, soil conditions and other environmental pa-
rameters that cannot be observed in the greenhouse. The
TERRA-REF gantry system was designed to meet the sort
of technical requirements for high throughput phenotyping
in a field setting. The TERRA-REF field and gantry system
are shown in Figure 1, and example data captured from its
RGB, 3D-scanner and thermal cameras are shown in Fig-
ure 2.

Over the course of its first several years in operation, the
TERRA-REF platform collected multiple petabytes of sen-
sor data capturing the full growing cycle of sorghum plants
from the sorghum Bioenergy Association Panel [1], a set
of 390 sorghum cultivars whose genomes have been fully
sequenced and which show promise for bio-energy usage.

2.2. Phenotyping from Aerial Data

While in-field sorghum phenotypes have been deter-
mined using aerial RGB data from drones[8, 6, 3, 10, 4, 7],
UAV datasets are limited in their temporal resolution due
to the labor required in capturing the data, and their spatial
resolution is limited both by the sensors that are able to be
mounted on board a drone and the time constraints of the
drone operator (flights from lower to the ground are higher
resolution but take longer to complete). By comparison, the
data from the TERRA-REF Gantry-based Field Scanner has
both high spatial resolution (the gantry has extremely high

Figure 2: Example data from the TERRA-REF gantry
system. (top-left) RGB data. (top-right) 3D-scanner data
(false color, where color indicates the surface normal and
value indicates depth from the scanner). (bottom) Thermal
data. In this paper we focus on data from the RGB camera.

quality sensors and the height of the gantry is placed to op-
timally image the plants thoughout the growing cycle), and
temporal resolution (data is captured every day).

3. Dataset & Classification Task

In this paper, we describe the Sorghum-100 dataset, a
curated subset of the RGB imagery captured during the
TERRA-REF experiments, labeled by cultivar and day af-
ter planting. The dataset will be released publicly and there
will be a corresponding Kaggle competition. This data
could be used to develop and assess a variety of plant phe-
notyping models which seek to answer questions relating to
the presence or absence of desirable traits (e.g., “does this
plant exhibit signs of water stress?”). In this paper we focus
on the question: “What cultivar is shown in this image?”
Predicting the cultivar in an image is an especially good
challenge problem for familiarizing the machine learning
community with the TERRA-REF data. At first blush, the
task of predicting the cultivar from an image of a plant may
not seem to be the most biologically compelling question
to answer – in the context of plant breeding, the cultivar,
or parental lines are typically known. A high accuracy ma-
chine learning predictor of the species captured by the sen-
sor data, however, can be used to determine where errors
in the planting process may have occurred. For example,
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Figure 3: Multiple images from the dataset representing different cultivars. The rows represent different culitvars. The
columns represent different captured dates respectively: June 1st, 3rd, 7th, 17th, 19th and 27th, 2017.

seed may be mislabeled prior to planting, or planters may
get jammed, depositing seeds non-uniformly in a field [9].
Both types of errors are surprisingly common and can cause
major problems when processing data from large-scale field
experiments with hundreds of cultivars and complex field
planting layouts.

The Sorghum-100 dataset consists of 48,106 images and
100 different sorghum cultivars grown in June of 2017 (the
images come from the middle of the growing season when
the plants were quite large but not yet lodging – or falling
over). In Figure 3, we show a sample of images from four
different cultivars. Each row includes six images from dif-
ferent dates in June. This figure highlights the high inter-
class visual similarity between the different classes, as well
as the high variety in the imaging conditions from one day
to the next, or even over the course of a day.

The dataset is divided into a training dataset and a test-
ing dataset. Each cultivar was grown in two separate plots in
the TERRA-REF field as shown in Figure 4 (top) to account
for extremely local field or soil conditions that might impact
the growth of plants in one particular plot. We leverage this
natural split in the data when dividing our dataset between
train and test – images for a given cultivar in the training
dataset come from one plot, while the test images from that
same cultivar come from the other plot. This means that
a model cannot achieve high performance by memorizing

features that aren’t meaningful phenotypes (e.g., by mem-
orizing patterns observed in the dirt). The training dataset
consists of 22,635 images, and the testing dataset consists
of 25,471 images (which plot was included in training vs.
test was randomly selected).

4. Baseline Results
To provide a reasonable baseline on the Sorghum-100

dataset, we trained a ResNet-50 model [5] (pre-trained on
ImageNet). During training we resize the original images
to be 512 pixels on its shortest side, and then take a ran-
dom 512 × 512 crop (at test time, we take a center crop).
We normalize by channel means and standard deviations
and perform random horizontal and vertical flips. We use
global average pooling and train with cross entropy loss.
This baseline approach achieves 72.12% top-1 classification
accuracy on the test set.

5. Conclusion
In this paper, we introduced the Sorghum-100 cultivar

classification dataset which includes tens of thousands of
images from 100 bio-energy lines of sorghum grown in the
TERRA-REF field. This is the first gantry-based sorghum
dataset, which has higher temporal and spatial resolution
than similar UAV based datasets, making the data suitable
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Figure 4: TERRA-REF Field Organization. (top) Each
experimental cultivar was planted in two different plots at
distant locations in the field (borders were planted with
well-known cultivars). In the top figure, each plot is la-
beled by its cultivar name, and plots from the same culti-
var have matching colors. For each non-border cultivar, we
include images from one of the plots in our training data,
and images from the other plot in our test data, requiring
models to generalize across field locations (as opposed to,
for example, overfitting on unique ground features that are
not relevant to the cultivar). (bottom) Original data from the
sensor is pre-processed to crop regions that confidently only
consist of plants from a single plot. The blue rectangle in
the image above shows a the ground boundaries of a plot
projected onto the image.

for generating models for true high-throughput phenotyp-
ing in the field. While this paper presents the dataset in the
context of cultivar classification, we hope to in the future re-
lease more data products and metadata, including data from
additional sensors and both hand- and algorithm- generated
phenotypes with the goal of supporting the development
of machine learning models for more sophisticated high-
throughput phenotyping tasks.

The dataset and corresponding competition can be found
at https://www.kaggle.com/c/sorghum-100.
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